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Graph-based cross-domain recommendations (CDRs) are useful for suggesting appropriate items because of their promising

ability to extract features from userśitem interactions and transfer knowledge across domains. Thus, the model can efectively

alleviate cold start and data sparsity issues. Although the graph-based CDRs can capture valuable information, they still

have some limitations. First, embeddings are highly vulnerable to noisy interactions, because the message aggregation in

the graph convolutional network can further enlarge the impact. Second, because of the property of graph-structured data,

the inluence of high-degree nodes on representation learning is more than that of the long-tail items, and this can cause a

poor recommendation performance. In this study, we devised a novel Adaptive Adversarial Contrastive Learning framework

for graph-based Cross-Domain Recommendation (ACLCDR). The ACLCDR introduces reinforcement learning to generate

adaptive augmented samples for contrastive learning tasks. Then, we leveraged a multitask training strategy to jointly optimize

the model with auxiliary tasks. Finally, we veriied the efectiveness of the ACLCDR through nine real-world cross-domain

tasks adopted from Amazon and Douban. We observed that ACLCDR exceeded the best state-of-the-art baseline by 25%,

42.5%, 16.3%, and 23.8% in terms of HR@10 and NDCG@10 for the Music & Movie task from Amazon.

CCS Concepts: · Information systems → Recommender systems; Top-k retrieval in databases; · Computing method-

ologies → Adversarial learning.

Additional Key Words and Phrases: self-supervised learning, contrastive learning, adversarial learning, reinforcement learning,

collaborative iltering, cross-domain recommendation

1 INTRODUCTION

Recently, recommendation systems have achieved promising results in capturing user preferences and providing

appropriate suggestions for users to purchase items. These recent advances in deep learning technique can

help models capture latent information, and as a result, recommendation models, such as sequence-based and

graph-based recommendations, have attained satisfactory results. Sequential recommendation approaches utilize
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a large amount of user’s previous behavioral data to capture the useful patterns to make a precisely accurate

recommendation for the users. Generally, the sequential recommender systems are designed to predict continuous

items that users prefer to purchase in the next time period based on the historical behavior of the users [50]. In

contrast, graph-based recommender systems [8] incorporate graph structure data to extract implicit information

from a high-order connectivity between the user nodes and the item nodes to make desirable suggestions to

the users. Despite the powerful ability to capture latent information from the purchase history data of the

users, the implementation of these two types of recommendations is limited by data sparsity [29] and cold-start

problems [28] that inextricably cause poor recommendation results.

In order to mitigate the impact of the issues mentioned above and enhance recommendation performance,

cross-domain recommendation (CDR) is introduced. CDR utilizes shared user information as auxiliary data to

facilitate the transfer of knowledge from a relevant domain to the target domain. [18]. With the development of

deep learning approaches, some researchers have employed these approaches [19] to jointly train the shared

parameters of the recommender system across domains to obtain relevant information, which is beneicial for

knowledge transfer. Moreover, Liu et al. [21] introduced a graph collaborative iltering mechanism to capture

latent information from the bipartite graph and enable a bidirectional knowledge transfer between the two

domains. Considering the success of current graph-based techniques like the graph convolutional network (GCN),

which leverage robust embedding models, we introduce an approach designed to capture enhanced user and

item embeddings. This is accomplished by extracting shared features across domains and combining them with

domain-speciic features to yield efective recommendation outcomes.

Although the graph-based approaches can capture implicit information between the user nodes and the item

nodes in the bipartite graph, we believe that these previously reported approaches have some limitations. First,

the noisy interactions between users and items signiicantly inluence the embeddings, and the aggregation

technique used to integrate the neighborhood message in the graph convolutional network can further expand

the inluence. In the real recommendation scenario, the noise data can be divided into two types of userśitem

interactions. For example, although the user purchased the items, the e-Commerce software systems did not

record the transactions in their database. Moreover, the user may purchase the items from other e-Commerce

platforms, so there are no data in the database of this e-Commerce platform. Furthermore, the products on the

e-Commerce platforms are vastly diverse. Thus, the user may mistakenly purchase the wrong items or may buy

the items for others. Wang et al. [34] claimed that a signiicant portion of purchases made in e-commerce result in

negative feedback, as implicit interactions are heavily inluenced by users’ initial impressions. These interactions

are often regarded as noise, as users may have purchased items for the wrong reasons and may not genuinely

like them, despite having interacted with them. Therefore, if the implicit information in the graph data contains

bias or noise against the prediction objectives, then the performance of the CDR would be severely deteriorated.

Other studies et al. [36, 46] have also identiied the limitations of implicit feedback and have proposed reinforced

sampling strategies to identify informative and reliable training samples. Sampling techniques have also been

employed in [38] to address the issue of noisy interactions in knowledge graphs. In addition, the quality of

the generated embedding in graph-based approaches can be afected by the aggregation mechanism used, as

higher-degree nodes tend to have a greater impact during representation learning. Consequently, graph-based

approaches are more susceptible to the negative efects of noisy interactions [40].

In bipartite graph data, diferent nodes have varying numbers of edges. High-degree nodes represent more

connected edges, while long-tail nodes represent fewer connected edges. In this research, long-tail nodes still

have enough connected edges to meet the hypotheses of our method. After the features of these nodes are

extracted through the embedding model, since the design of embedding model will make the node with a large

number of edges have a greater impact on the overall embedding. As a result, if these High-degree Nodes have
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wrong information or bias, it would lead to a drastic impact on other node embeddings. For example, in the

actual e-commerce situation, some products may have popularity bias, causing many people to rush to buy them,

which may be iPhones or certain inancial products, popular funds, etc. This product may not be suitable for

everyone, but due to the inluence of high-degree nodes, the recommendation system will be afected by this

bias, and only such products will be recommended. Therefore, the method we designed hopes to design the

self-supervised learning(SSL) method for this point, and ind the most suitable neighbor node for each node to

reduce the inluence of bias. Ultimately, such a result will lead to a reduction in recommendation performance,

and will afect other users’ recommendation failures, even favor certain types of products. At the same time, in

order to emphasize the uniqueness of each user, we hope to reduce the impact of such products and consider the

suitability of long-tail products for this user. However, even for long-tail items, they still need to have suicient

training data and are not entirely considered as cold-start items. The diference compared to high-degree nodes

is that these long-tail items have fewer edges.

Due to these limitations, recently, Wang et al. [32] proposed an SSL framework to capture the fusion or association

between the sequence data and the context data. It leverages the correlations between these data types to

generate self-supervision signals that enhance latent embeddings, thus improving the performance of sequential

recommender systems. Wu et al. [40] implemented an SSL on a heterogeneous graph to model the latent

information between the users and the items to improve the robustness and accuracy of the recommender system.

Wang et al. [31]introduced the PCRec framework, which employs contrastive learning for the pretraining of

graph neural networks and subsequently ine-tunes the model to achieve improved recommendation results. The

results obtained by these authors indicated that the self-supervised method can efectively enhance the quality of

the representations as well as improve the CDR performance. However, the previous methods only considered

augmentation approaches based on random theory, such as randomly dropping nodes, edges, or the random

walk technique [27], to generate multiple graph views from the original graph and enhance the consistency

between the views of the same nodes in contrast to those of other nodes. The augmentation samples are randomly

generated, resulting in the data potentially containing negative information or bias against SSL. Thus, contrastive

learning is unstable and slightly less efective in helping the model reine the representations.

To generate representative augmentation samples for contrastive learning, augmentation methods should be

developed taking into account the individual property and topological information of each node in the graph.

Inspired by previous researches, we devise a novel Adaptive Adversarial Contrastive Learning framework for

graph-based Cross-Domain Recommendation (ACLCDR) that can adaptively learn the graph representations by

generating lexible augmentation samples for contrastive learning. Speciically, the ACLCDR framework adopts a

multitask training strategy and jointly optimizes the model with the main supervised recommendation task and

the auxiliary SSL tasks. First, Deep Double Q-Learning Network (DDQN) was applied to adversarially generate

diferent graph views based on the concept of adversarial learning [5]. Adversarial learning can intuitively produce

adversarial samples and train the model with these imperceptible samples to enhance the robustness. Therefore,

by applying the idea of adversarial learning to contrastive learning, we devised an intelligent augmentation

mechanism that can produce adversarial graph views, which are barely distinguishable by the model, by adaptively

adding or removing the links between nodes. Thus, the model treats the views of the original nodes as anchor

samples, the adversarial views of the same nodes as positive samples, and the adversarial views of any other nodes

as negative samples. Within the SSL tasks, auxiliary supervision of positive samples enhances the coherence

among diverse views of the same node. Conversely, supervision of negative samples enforces distinctions between

diferent nodes. This can help capture the implicit and explicit information more precisely in each single domain

as well as aid in jointly learning the correlation between two diferent domains to enhance the model performance

and adaptively obtain high-quality embeddings for the CDRs. The contributions of this study are listed below:
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• We proposed the ACLCDR framework, which is an adversarial contrastive learning method based on rein-

forcement learning, to enhance the representation learning for CDR. Unlike previous methods, the ACLCDR

introduces adaptive augmentation methods that consider the topological information of the original graph to

generate diferent adversarial graph views across the domains to improve the contrastive learning.

• We devised three types of contrastive learning tasks for CDR, such as intradomain user-level task and

intradomain item-level task, which were used to extract the domain-speciic features, and interdomain tasks

to capture the domain-shared features and fuse them with the domain-speciic features that depend on the

use of user nodes and item nodes across the domains.

• To the best of our knowledge, we are the pioneering work to unify adversarial learning and contrastive

learning for CDR. This novel combined approach helps the model to obtain reined representations and

achieve an outstanding performance for nine real-world cross-domain tasks.

2 RELATED WORK

In this work, we focused on devising a novel adversarial SSL ACLCDR framework to improve the CDR performance.

In this section, we review the existing cross-domain methods (Section 2.1), adversarial learning on graph

(Section 2.2), and self-supervised graph learning approaches for recommendation (Section 2.3), which closely

correspond to our proposed method.

2.1 Cross-Domain Recommendation

cross-domain recommender systems leverage the information from two related domains to address data sparsity

and cold start problems [18]. For cold-start problems, PTUPCDR [54] employs meta-learning to capture the

individual user embeddings and transfer personalized information across the domains with a task-oriented

optimization process. CDRIB [1] uses the variational information bottleneck as a regularizer to enforce the

representation encoded by the shared features of the domain and derive the unbiased domain-shared information

for cold-start users.

Basically, CDR can be formulated into four types based on diferent recommendation scenariosÐsingle-target

CDR, multidomain recommendation, dual-target CDR, and multitarget CDR. Single-target CDR focus on utilizing

the auxiliary information extracted from the richer domain and transfer it to the sparser domain to alleviate the

data sparsity problem. However, as both implicit and explicit information, such as ratings, reviews, and individual

purchase histories, can be seen relatively abundantly in each domain, it is possible to enhance the cross-domain

model simultaneously. To address the above problem, dual-target CDR and multitarget CDR are introduced to

capture overlapping user preferences from the source domain or more than one relevant domain and employ

bidirectional transfer learning approaches to exchange auxiliary information across the domains. Li et al. [20]

incorporated adversarial learning to extract domain-shareable features, facilitating the reinement of user and

item representations across domains. Additionally, they employed an attention mechanism to learn latent item

factors through overlapping users to represent all the items in a common space. Gao et al. [11] designed neural

networks based on the neural attentive transfer framework to distill item embeddings across the domains. Chen

et al. [7] utilized equivalent transformation, which can preserve domain-speciic features and model the joint

distribution of the user behaviors between the domains to extract the domain-shared features for knowledge

transfer between the domains. Guo et al. [12] utilized a disentangled representation learning model to capture

both domain-shared and domain-speciic information, which enables the model to make recommendations across

all domains while remaining unafected by the number of domains.
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Graph learning has been adopted in CDRs to learn the representative embeddings. Zhao et al. [51] integrated

the userśitem interactions between the domains into a graph and captured high-order user preferences through

the feature propagation with multiple GCNs. Liu et al. [21] exploited common users as a two-way transfer

bridge to exchange valuable information across the domains. They modeled the domain-shared features in the

high-order bipartite graph with multiple feature propagation layers and fused the auxiliary information with the

domain-speciic features to improve the recommendation results. Wang et al. [37] employed a parallel graph

neural network to extract user preferences from corresponding graphs. Subsequently, they applied a mutual

learning procedure to integrate the extracted preferences and generate a more comprehensive representation of

the user’s preferences. Ouyang et al. [25] proposed a DMGE model that can model the high-quality embeddings

using multigraph neural networks to capture the high-order user information in the multigraphs obtained from

diferent domains. Although the existing successful applications are based on the graph learning methods to

capture the latent implicit information in the graph, they rarely consider the latent associations between the users

and the items. Moreover, graph representation learning is severely afected by the noisy interactions between the

users and the items, and the message aggregation mechanism in the GCNs can enhance the inluence, leading

to inferior quality embeddings. Furthermore, the performance of the cross-domain model can be drastically

deteriorated when the auxiliary information contains bias or noise against the prediction objectives. In this paper,

we introduce an adversarial SSL technique to construct a stable multitask training framework to overcome these

issues and successfully improve the cross-recommendation performance.

2.2 Adversarial Learning

With the prosperous development of deep learning, several applications that apply deep neural networks have

achieved better performance. However, previous studies have also shown that the deep learning-based models

are vulnerable to sophisticated adversarial samples. Similarly, in the recommendation domain, the recommender

systems that use deep learning approaches are also considerably afected by the adversarial attack methods,

and the inal performance of the recommendations degrades signiicantly [41]. Zhang et al. [48] devised a

reinforcement learning-based user simulator that can efectively generate fake user behavior samples and allows

these fake users to interact with a surrogate recommendation model to produce adversarial samples for a

poisoning attack on the target recommendation system. Wang et al. [39] developed a gray-box shilling attack

framework. This framework employs generative adversarial networks to capture intricate user behaviors from

user-item interactions, generating fake user proiles capable of confounding the recommender system. These

fake user proiles are closely ailiated with those of real users and lead to poor recommendation results. In

addition, when extended to the CDR domain, adversarial attack can even severely degrade the performance of

the model. Chen et al. [3] adopted a poisoning attack strategy, which injects malicious user rating behaviors

into the training data across the domains, and showed that the promising recommendation performance of the

collective matrix factorization technique can be drastically afected by the sophisticated adversarial samples.

Fan et al. [10] proposed the CopyAttack framework that adopts reinforcement learning to generate user proiles

similar to those of the source and target domains through a black-box attack.

Several researchers [24] reportedly adopted the adversarial learning technique to alleviate the efect of adversarial

attack. Yan et al. [43] proposed an adversarial cross-domain network, which uses adversarial learning for

dynamically generating adversarial examples to train a robust recommendation model. In addition, in some

existing cross-domain works, the strengths of adversarial learning have been explored to capture both domain-

speciic and domain-shared features from userśitem interactions to obtain reined representations. Li et al. [20]

combined matrix factorization with adversarial learning to integrate and align the latent factors of the users and

items in a uniied pattern to capture as well as transfer the robust factors of the users and items. Zhang et al. [49]
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proposed the DA-CDR, which utilizes shared encoders with a domain discriminator to capture the latent features

of the users and items in two domains through a dual adversarial learning.

In addition, in the computer vision domain, Chen et al. [5] introduced adversarial training into SSL to pretrain

the models, and demonstrated that self-supervision can save the computation cost and enhance the inal model

robustness. Because of the impressive capability of adversarial learning to generate well-designed adversarial

samples that can help the model reine user and item embeddings, we combined it with the self-supervised

paradigm learning to form a multitask training strategy to obtain representative results . More precisely, compared

with the existing methods that only consider randomly generated adversarial samples, which are unstable and

inefective, we devised a reinforcement learning-based adversarial learning framework that can adaptively

generate several adversarial samples as diferent augmented views of the original graph for contrastive learning.

Moreover, we adopted the multitask training method to train the model with the adversarial samples generated

in several SSL tasks to mitigate the efect of the training data, that contain noise or bias against the prediction

objectives, and achieved promising recommendation results.

2.3 Self-Supervised Learning

Recently, self-supervised learning methods [22] have attracted the interest of researchers due to their excellent

ability to capture associations and correlations in explicit and implicit information to learn reined latent

representations of unlabeled data. Typically, the basic concept of self-supervised learning is to capture signals

from diferent forms of raw data, including positive and negative samples, and to use the learned embeddings

to train the model simultaneously. Drawing inspiration from the successful application of contrastive learning

techniques in visual representation learning [4] and the ield of natural language processing (NLP), self-supervised

paradigm is used to extract informative knowledge through predeined relevant tasks. Recently, some existing

works have taken advantage of self-supervised learning to enhance the performance of recommendation models.

Wang et al. [32] have devised multiple contrastive learning tasks that can extract auxiliary information from

inherent data patterns to improve the quality of embeddings by pre-training the embedding models and gain

promising results of sequential recommendation models. Pan et al. [26] employed gated graph neural networks

with self-supervised learning tasks to jointly train the model parameters for session-based recommendation and

achieve better results on several real-world datasets. Xia et al. [42] employed a hypergraph learning architecture

to enhance the graph-based collaborative iltering approach by incorporating global collaborative efects through

low-rank structure learning. Despite the advance development of graph contrastive learning on recommendation,

most of the existing methods still implement stochastic augmentation approaches on the original input graph to

generate diferent views of the graph. Moreover, since the uncertainty of random theory, which can probably lead

to the instability and imprecisely to capture the representations of users and items, it can afect the strengths

of self-supervised learning on the enhancement of recommendation results. In addition, some other works

have discussed how to deal with noise and bias in recommendation models. The authors in [34] claimed that

Amazon data exhibits such a phenomenon, and they manually conducted an experiment to validate the negative

impact of noisy data. They subsequently developed an adaptive denoising training strategy to mitigate the

efects of false-positive interactions. Zhang et al. [47] address the issue of popularity bias in Collaborative

Filtering (CF) models by introducing bias-aware margins into contrastive loss. They propose a straightforward

yet eicient BC Loss, in which the margin is adapted to the degree of bias present in each user-item interaction.

Yang et al. [44] proposed a new contrastive loss function that can adaptively optimize hard negative instances

without complex training tricks. They also developed an eicient sampling strategy that incorporates item

frequency information to explore negative instances without explicit negative sampling. While previous works

have achieved promising recommendation performance, some studies focus only on addressing speciic biases and

ACM Trans. Knowl. Discov. Data.



Adaptive Adversarial Contrastive Learning for Cross-Domain Recommendation • 7

neglect noise problems. Furthermore, these previous self-supervised approaches only consider the single-domain

recommendation scenario, which cannot be directly applied to cross-domain recommendation since the model

should take into consideration the discrepancy of diferent domain information.

To address these above problems, Wang et al. [31] proposed a pre-train and ine-tune framework for cross-domain

recommendation that combined contrasitve self-supervised learning technique to initialize to obtain the graph

embeddings in the target domain. Therefore, motivated by contemporary works on graph pre-training tasks,

we propose a novel adversarial self-supervised framework that introduce multi-task training strategy to jointly

learn cross-domain recommendation with several auxiliary contrastive learning tasks. In our work, we devise

three types of self-supervised tasks that can be implement depends on diferent training purposes, including two

intra-domain tasks and one inter-domain task. In fact, intra-domain tasks are mainly used to extract domain-

speciic features, and inter-domain task is designed for the enhancement of knowledge transfer. Therefore, with

the advantage of multi-task learning strategy, the model can efectively extract user preferences to get reined

representations and improve the efectiveness of cross-domain models.

3 PRELIMINARIES

In this section, we irst formulate the fundamental deinitions of the problem. Then, we introduce the notations

used in our study and briely review the graph neural network and MI maximization.

3.1 Problem Definition

In CDR, a typical problem is leveraging the data transferred from the relevant domain to the target domain.

Therefore, we consider the graph data Gs and Gt in the source domain Ds and the target domain Dt . In domain

Ds , where us and is denote a user and an item, respectively, andUs and Is indicate the number of users and items,

respectively, we have an adjacency matrix transformed from graph Gs to represent the interactions between

users and items (As ∈ RUs×Is with an entry rDs

ui . Similarly, in the domain Dt , where ut and it denote a user and

an item, respectively, andUt and It indicate the number of users and items, respectively, we have an adjacency

matrix transformed from graph Gt to indicate the userśitem interactions (At ∈ RUt×It ) with an entry rDt

ui . Both

the entries rDs

ui and rDt

ui can be abstracted as:

rDui =

{

1, If the interaction exists;

0, otherwise.
(1)

where D represents the source domain or the target domain, u represents a user, and i represents an item in each

domain.

In these two domains, we denote the number of overlapping users byUo and consider the Top-N recommendations

with their implicit feedback across the domains. The recommendation problem can be simpliied to a function to

predict the scores of the unobserved entries of the overlapping users in the userśitem interaction matrices As

and At , which are later used for ranking. Speciically,

rDui = f (u, i |Θ) (2)

where D denotes the source domain or the target domain, f denotes the score estimated function, Θ denotes all

the learnable parameters in the model and the entry rDui is the predicted score.

ACM Trans. Knowl. Discov. Data.



8 • Hsu, et al.

3.2 GCN-based Collaborative Filtering Models

Extracting satisfactory latent information from the interactions between the users and the items plays an

important role in recommendation. Because a GCN can efectively capture the associations and correlations

in high-order graph topological information, it has been used in most reported studies [15, 35]. In general, the

fundamental paradigm of the GCN layer is deined as:

e
(l )
u = faдд(e(l−1)u , e

(l−1)
i |i ∈ Nu ) (3)

where faдд denotes an aggregation function, el−1u and el−1i are the reined embeddings of user u and item i ,

respectively, after propagation of layers l − 1, and Nu represents the irst-hop neighbors of user u. Analogously,

we can derive e
(l )
i for the items.

BiTGCF [21] introduced the idea of the GCN-based propagation process and simpliied the paradigm of activation

function and transformation matrices, resulting in a novel feature propagation module that can efectively extract

valuable information from the implicit data and can be abstracted as:

fp (e(l )u ) = e
(l )
u +

∑

i ∈Nu

e
(l )
i ⊙ (1 + e(l )u )
√

|Nu | |Ni |

fp (e(l )i ) = e
(l )
i +

∑

u ∈Ni

e
(l )
u ⊙ (1 + e(l )i )
√

|Nu | |Ni |

(4)

where Nu and Ni represent the irst-hop neighbors of the user u and item i , e
(l )
u and e

(l )
i denote the embeddings

of the user u and item i propagated from layer l , ⊙ is the element-wise product, 1√
|Nu | |Ni |

denotes the symmetric

normalization term in GCN to reduce the inluence of the embedding scale on the propagation process, and fp (·)
is the feature propagation function. Analogously, we can derive fp (e(l )u ) and fp (e(l )i ) for the distinct domain.

Inspired by BiTGCF, in this study, we combined the advantages of the inner product technique to retain user

and item information with transformation matrices that can convert the domain-speciic features to design a

new hybrid feature propagation and transfer module. For the initial embeddings of the user u and item i in the

two domains, this model maps the user IDs into the embedding vectors e
(0)
us , e

(0)
ut ∈ Rd and the item IDs into

the embedding vectors e
(0)
is
, e

(0)
it

∈ Rd . More precisely, for the ID embeddings, the model builds an end-to-end

optimized embedding look-up table, which is deined as:

e
(0)
u =W

D
1 xu

e
(0)
i =W

D
2 xi

(5)

where D represents each domain;W D
1 andW D

2 are the trainable parameter matrices to obtain the initial user

embeddings and item embeddings, respectively; and xu and xi are one-hot encodings of the user and item IDs,

respectively. According to Equation 5, we can derive e
(0)
u and e

(0)
i for the other distinct domain.
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3.3 Mutual Information Maximization

MI maximization, a vital contrastive SSL mechanism, calculates the dependences of the two random variables A

and B. Thus, with MI maximization, the uncertainty in one variable can be signiicantly reduced by obtaining

information about the other dependent random variable. Generally, the MI between two random variables A and

B is deined as:

I (A,B) = H (A) + H (B) − H (A,B) = H (A) − H (A|B) = H (B) − H (B |A) (6)

However, MI maximization is an NP-hard optimization problem, which is diicult to maximize directly. Therefore,

in the previous studies [32, 52], the InfoNCE objective function, based on noise contrastive estimation, was

incorporated [13] to calculate the lower bound of I (A,B). InfoNCE, which is used to maximize the agreement

between similar data pairs (positive) and minimize that between diferent data pairs (negative), is deined as:

LInfoNCE = EP (A,B)[fθ (a,b) − Eq(B̃)[loд
∑

b̃ ∈B̃

exp fθ (a, b̃)]] + loд |B̃ | (7)

where a and b are diferent views of an input, and fθ is a similarity function (e.g., dot product), and B̃ is a dataset

sampled from a particular distribution q(B̃), containing a similar sample b as positive sample and |B̃ | − 1 diferent

samples as negative samples.

Depending on diferent tasks, InfoNCE can be modiied into several contrastive types. GCA [55] employs the

contrastive SSL technique to distinguish the embeddings, generated from the original node in these two distinct

views, from the those of the other nodes. The contrastive objective is established by the intra-view nodes using

the node pairs in the same graph and by the inter-view nodes using the node pairs between the same graph and

the augmented graph. The objective function can be deined as:

L(ui ,uj ) = loд
fθ (p(ui ),p(vi ))/τ

fθ (p(ui ),p(vi ))/τ +
∑

i,j

fθ (p(ui ),p(uj ))/τ +
∑

i,j

fθ (p(ui ),p(vj ))/τ
(8)

where ui denotes the original node as an anchor, vi denotes the other view of the same original node, uj denotes

any other nodes in the same view, vj denotes any other nodes in the other view, fθ denotes a similarity function,

p(·, ·) denotes a nonlinear projection, and τ denotes a temperature parameter.

Inspired by SimCLR [4], SGL [40] has been developed to augment diferent views of the graph nodes and separate

them into positive pairs generated from the original node and into negative pairs, which are the views of the

other nodes. Next, SGL adopts contrastive SSL to maximize the MI of the positive and negative samples. The

objective function is deined as:

Lssl = −
∑

u ∈U
(loд(exp(fθ (N ′

u ,N
′′
u )/τ )) + loд

∑

v ∈U
exp(fθ (N ′

u ,N
′′
v )/τ )) (9)

where N ′
u is the view of the original node, N ′′

u is the other view of the same node, N ′′
v is the view of any other

nodes, fθ is a similarity function, and τ is a temperature parameter.

Inspired by the aforementioned approaches, we adopted the multitask training strategy to optimize the model

with classical CDR and SSL tasks. Therefore, we combined adversarial and contrastive learning to adaptively
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generate adversarial samples for each node in the original graph as their positive and negative samples and

input to the model for the tasks. With the help of auxiliary SSL tasks, the model can improve the quality of the

embeddings to obtain reined user and item representations as well as improve the recommendation performance

of cross-domain models.

4 PROPOSED METHOD

In this paper, we propose the ACLCDR framework, which employs the multitask training strategy to jointly train

the cross-domain model with contrastive learning tasks. Speciically, the ACLCDR applies adversarial learning

to contrastive learning and presents an adaptive augmentation method to improve the CDR. In Section 4.1, we

irst introduce the comprehensive architecture of the ACLCDR framework. Then, we elucidate the adaptive

graph augmentation method and multiple contrastive tasks in Section 4.2 and Section 4.4, respectively. Next, in

Section 4.3, we present the feature propagation and transfer mechanism of ACLCDR. Finally, we present the

model training in Section 4.5.

4.1 System Overview

As shown in Figure 1, the proposed ACLCDR framework mainly consists of the following four modules. Module 1

denotes DDQN,module 2 denotes Feature Propagation and Transfer Layer, module 3 denotesMultitask Contrastive

Learning Task, and module 4 denotes Prediction Layer.

Ð Double Deep Q-learning Network. We employed the reinforcement learning technique, the Double Deep

Q-learning Network, to implement the adversarial learning to contrastive learning. We devised an adaptive

augmentation approach that can lexibly generate the customized adversarial samples of each node as diferent

views of the nodes in the original graphs across the domains Ds and Dt for multiple contrastive learning

tasks.

Ð Feature Propagation and Transfer Layer. To determine the user and item representations in a speciic

domain and to transfer knowledge across the relevant domains, we used the multiple layer framework to

capture the latent associations and correlations in the implicit data of the interactions between the users

and the items. Moreover, after the feature propagation and transfer in several layers, the model concatenates

the embeddings from each hidden layer for prediction. Speciically, we acquired not only the user and item

embeddings from the original graphs but also augmented embeddings from the augmented graphs. These

augmented embeddings were employed in conjunction with contrastive learning tasks to aid the model in

reining the representations.

Ð Multi-task Contrastive Learning Task. We adopted the multitask training strategy to jointly learn the

model parameters with the main CDR tasks and auxiliary tasks. Because the ACLCDR framework was mainly

designed for CDR, we devised two kinds of SSL tasks corresponding to the recommendation tasks, including

intradomain tasks, which help the model capture the latent information of the users and items to enrich

the domain-speciic features, and interdomain tasks, which assist the model to enhance the domain-shared

information and improve the knowledge transfer.

Ð Prediction Layer. Our aim was to devise a cross-domain multitask training framework that exploits adver-

sarial contrastive learning to enhance the user and item representations as well as improve the CDR results.

Thus, we employed a straightforward inner-product technique as the inal predictive layer to estimate the

probability of the existence of the given user-item pair.
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Fig. 1. The architecture of the proposed ACLCDR framework. First, the graphs Gs and Gt in two domains are transformed

into two adjacency matrices As and At , which are taken as inputs to the DDQN model. Ater the modification on graph

structure, the DDQN model generates two augmented adjacency matrices A
auд
s and A

auд
t to express diferent views of the

origin graphs in each domain. Then, the model refines user and item embeddings eus , eis , e
auд
us , e

auд
is

, eut , eit , e
auд
ut , and e

auд
it

to get representative respresentations with the feature propagation and transfer module. Next, the model uses the learned

embeddings to train with multiple auxiliary SSL tasks to enhance quality of the representations. Finally, the model can take

the refined embeddings prediction. Specifically, the SSL losses and the performances of recommendation in terms of HR and

NDCG on validation data are taken as rewards to update the DDQN model and enhance the augmentation policy.

In the following section, we introduce the details of the four aforementioned modules.

4.2 Adaptive Data Augmentation on Graph Structure

Our framework primarily focuses on utilizing the adversarial contrastive learning method to maximize the MI

between the view of the nodes in the origin graph and those in the augmented graph to alleviate the efect

of noisy data and enhance the quality of the representations for CDR. Therefore, we exploited the adversarial

learning mechanism that can generate sophisticated adversarial samples to formulate an adaptive and intelligent

augmentation process for contrastive learning tasks. Because adversarial samples have intrinsic properties that

are imperceptible to the model, we adopted adversarial learning as an augmentation mechanism that can preserve

the important topological information from the origin graph and mitigate the impact of noisy data. Inspired

by the recent advances in contrastive learning for graph structure, the ACLCDR framework was developed to
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adopt DDQN [30], which combines the Q-learning algorithm with deep neural networks, to adaptively generate

additional views of each node in the origin graph. Speciically, in the DDQN model, we simply set the discount

factor to 0.9 to determine the strengths of the rewards that the DDQN used to update its policy, the batch size to

32 in an episode, the number of replay bufers to 1000 to maintain the experience trajectories when performing a

policy in the environment, the number of random seeds to 10 based on the description of Colas et al. [9] to obtain

sensible results, and set the number of episodes to 100 to train the DDQN agent and learn a reasonable policy

after divergence. In the DDQN model, there are two value functions; one is used to choose the greedy policy and

the other to decide its value. The objective of the DDQN can be deined as:

Y
DoubleQ
t ≡ Rt+1 + γQ(St+1, argmax

a
Q(St+1,a;θt );θ ′t ), (10)

where Rt+1 and St+1 are the reward and state at time t + 1, respectively, a is the action and γ ∈ [0, 1] is a discount
factor to control the impact of immediate rewards versus future rewards.

Because the userśitem graph is a bipartite graph, where the links are connected between the user nodes and the

item nodes, we focused only on modifying the user nodes, which is equivalent to modifying the item nodes with

the actions performed in the augmentation process. Speciically, in this study, we considered the CDR tasks. Thus,

two adjacency matrices As and At , representing the graphs Gs and Gt in the domains Ds and Dt , respectively,

were irst encoded to the initial embeddings Es0 and Et0 , which were taken as the observation states in the input

to the ACLCDR model. After the origin graph structures are modiied into several diferent views of the same

graphs, the augmented graph views G̃s and G̃t are used to train with multiple contrastive learning tasks later.

Given the initial embeddings Es0 and Et0 , the augmentation process based on adversarial learning can be modeled

as a Markov Decision Process (MDP). The deinition of the model is presented as follows:

Ð State. The initial embedding Es0 consists of user embeddings e
(0)
us and item embeddings e

(0)
is

in domain Ds ,

and Et0 contains the representations of users e
0
ut

and items e0it in domain Dt are taken as the initial state.

Therefore, the initial state is deined as S0 = [Es0 | |Et0 ]. After the execution of the action at0 , the state St+1 at

the next timestamp t + 1 is denoted [Est | |Ett ]. The new embeddings Est and Ett are reined from SSL tasks

using origin graphs Gs and Gt and augmented graphs G̃s and G̃t , which are modiied by actions ast and att
deined in the adaptive augmentation strategy under adversarial learning.

Ð Action. Actions ast and att at time t comprise all the actions of the speciic number of user nodes in both

the domains, which can be deined as ast = [a1st | |a
2
st
...a

Ns

st ] and att = [a1tt | |a
2
tt
...a

Nt

tt
]. Action can be organized

into three types, including edge addition, edge dropout, and no action, as elaborated in Figure 2. Basically,

in the training process, actions as0 and at0 are predeined, taking into account the speciic number of user

nodes to be modiied in the two domains. Then, the model can use the information from the learned user’s

preference to generate fake user transaction records, which is seen as an adversarial learning phase, and make

the potential links between the user and items that can be added. In contrast, in the edge dropout action, the

model simultaneously learns the user’s preference and utilizes the knowledge to drop the edge between the

user and items that the user may not all like relative to other items or unexpectedly buy the wrong things. In

the same way, if the model decides to implement no action on the user node, which means that the user’s

transaction history satisies his preference.

Ð Reward. The reward Rst and Rtt at time t are obtained after the completion of the multiple contrastive

learning tasks and the evaluation of the CDR performance on validation data. After the execution of the

actions as0 and at0 , the origin graphs Gs and Gt and the modiied graphs G̃s and G̃t in the domains Ds

and Dt are placed in the feature propagation and transfer layers to capture domain-speciic features and
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Fig. 2. The adaptive action design of Deep Double Q-learning Network (DDQN) module. The red lines represent edge

addition, the black doted lines denote edge dropout, and the remaining black lines are no action, ater the model performs

actions.

domain-shared features to obtain reined representations. Then, the model is jointly trained with multiple

contrastive learning tasks, including intradomain tasks and interdomain tasks, to maximize the agreements

between the two diferent views of the user and item embeddings. In intradomain tasks, we use the InfoNCE

loss function in Equation 7 to minimize the discrepancy across the views of user nodes as well as the views of

item nodes in diferent graph views. Furthermore, in the interdomain tasks, we enhance the capability of the

knowledge transfer mechanism by conducting contrastive learning tasks in the same way on overlapping

user nodes, who have transaction records in both the domains Ds and Dt . Moreover, we calculate the

changes in the initialized Hit Ratio and that obtained from the evaluation of the recommendation results

on validation set in two domains as the other rewards. Therefore, the reward at time t in domain Ds is

deined as Rst = −Wr s1 (LssinдleSSL + LcrossSSL) +Wr s2HRst , the reward at time t in domain Dt is deined

as Rtt = −Wr t1 (LtsinдleSSL + LcrossSSL) +Wr t2HRtt , and the total reward at time t is formulated as Rt =

WrRst + (1 −Wr )Rtt , whereWr s1 ,Wr s2 ,Wr t1 ,Wr t2 andWr are hyperparameters to determine the strengths of

the rewards in diferent domains to update the DDQN model.

Ð Terminal. For enhancing the representations as well as alleviate the impact of noisy data to achieve a

promising CDR performance, ACLCDR adopts the multitask training strategy to reine the user and item

representations with multiple contrastive learning tasks. Because contrastive learning helps the model to

reine the embeddings by distinguishing the views of the original graph and augmented views, ACLCDR

can lexibly generate adversarial samples with the adaptive augmentation method on graph structure after

executing previous actions. After the implementation of N actions, the embeddings Est and Ett are reset to

the original embeddings Es0 and Et0 . Moreover, the framework stores the trajectories experience in the replay

bufer, which can enhance edge selection in the augmentation process to make it more efective and adaptive.

Finally, the observation state will be reset afterT updates to ensure that our proposed ACLCDR focuses on its

objective.

In the settings, a trajectory in this MDP is deined as (S0,a0,R0, S1,a1,R1, ..., St ,at ,Rt , St+1), where the initial
state S0 = [Es0 | |Et0], the initial action a0 = ∥Ni=0 ai1, N denotes the number of user nodes to be modiied across

domains and the next state St+1 = [Est ∥ Ett ]. An action at in each step has a corresponding reward Rt . The

aforementioned problem was mainly designed, as stated, by discrete optimization; thus, Q-learning was adopted

to learn the MDPs. However, the Q-learning algorithm can cause an overestimation bias in the rewards when the

approximation of the reward is higher than the true value of one or more of the correlated actions. To address the

problem, the DDQN technique is introduced to learn MDPs in ACLCDR. Initially, to avoid the large state-space
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problem that directly utilizes the adjacency matricesAs andAt as inputs to the DDQNmodel, these two adjacency

matrices representing the graphsGs andGt in the two domains are used to train the model and transformed into

the initial embeddings Es0 and Et0, i.e., the user and item embeddings.

Then, the initial state s0 contains the embeddings Es0 and Et0 is taken as the input state of the environment,

and the DDQN model outputs the action a0 which consists of all modiications to the connections between

the user nodes and the item nodes to select which actions to implement in the speciic ratio of the user nodes.

Inspired by existing work [40], the action ai1 of the speciic ratio of the nodes can be selected from the three

types illustrated in Figure 2. The irst action is edge addition, which directly creates the connection between

a user node and a potential-interested item node based on his preference. When performing these actions on

the user node, it means that the item satisies the user’s interest while he has never seen or purchased the item.

Moreover, the second action is the edge dropout, which directly removes the link between two nodes. In fact,

many situations are involved, including the user may accidentally buy the wrong things, the user preference may

evolve over time, or the user interest may have bias. Therefore, the link between the user and the item should be

disconnected to prevent poor recommendations. Furthermore, the last action is no action, which preserves the

link information between the user and the item based on his preferences. Such augmentations directly transform

the graph structure as a topological augmentation approach that can not only reduce the impact of the potentially

noise data but also enhance the representation transfer process to achieve better recommendation performance.

The action of the user nodes in the domains Ds and Dt can initially be formulated as augmentation of the links

between the user nodes and all the existing item nodes in the graph. The action space consists of all actions

selected by the DDQN that can be applied only to the user nodes, but the inluence can be broader via the

connections in the graph. However, if all the connections are considered, then the large action space of the model

can cause a computation problem. Therefore, to avoid the problem, we try to reduce the size of the large action

space with sampling methods. To formulate the concrete action space, the speciic ratio of the user nodes to be

modiied must irst be pre-deined. The action will then be implemented on the given number of user nodes that

the model randomly chooses. We believe that the method is more lexible and efective by learning to choose the

optimal strategy for each user node according to their preference. Through this process, a superior solution can

be discovered and implemented. We assume that the ratio of user nodes to be modiied is a hyperparameter, and

we further discuss the diferent sampling approaches and the best ratio to use later in Section 5.2.

The reward Rt constructed by the reward Rst obtained from the domain Ds and the reward Rtt gained from

the domain Dt is designed to evaluate the efectiveness of SSL tasks and the performance of the CDR on the

validation set. In ACLCDR, we focus primarily on enriching the representations of users and items and alleviating

the efect of noisy data both the domains to achieve considerable performance. Thus, we design multiple types

of contrastive learning tasks for not only on single-domain (intradomain) learning, but also on cross-domain

(interdomain) learning. After implementation of these tasks, the model can incorporate self-supervised loss as

a kind of reward to update the DDQN model. Actually, the paradigm of contrastive learning tends to reduce

the disparity between similar samples, which is totally in contrast to the idea of adversarial learning, which

generates adversarial samples to confuse the model. Because of the intrinsic property of adversarial samples

that are imperceptible to the model, it is more diicult to distinguish them. Therefore, we introduce adversarial

learning to generate adversarial samples for SSL and believe that the model can learn more information from the

contrastive learning tasks. The reward Rst obtained from the domain Ds deined as follows,

Rst = −Wr s1 (LsinдleSSL + LcrossSSL) +Wr s2HRst (11)
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whereWr s1 andWr s2 are the hyperparameters, LsinдleSSL is the intradomain SSL loss in domain Ds , LcrossSSL
is a SSL loss acquired from the cross-domain SSL task and HRst is the Hit Ratio at Top-10 used to evaluate the

recommendation performance in domain Ds .

Furthermore, the other reward Rtt gained from the domain Dt is deined as follows,

Rtt = −Wr t1 (LsinдleSSL + LcrossSSL) +Wr t2HRtt (12)

whereWr t1 andWr t2 are the hyperparameters, LsinдleSSL is the intradomain SSL loss in domain Dt , LcrossSSL is

the SSL loss acquired from the cross-domain SSL task, and HRtt is the Hit Ratio at Top-10 used to evaluate the

recommendation performance in domain Dt .

In summary, the total reward Rt used to update the network policy is deined as follows,

Rt =WrRst + (1 −Wr )Rtt (13)

whereWr is the hyperparameter used to control the degree of rewards in domain Ds and Dt to update the DDQN

model.

Unlike explicitly deining the reward as the Hit Ratio in the two domains, we calculate the diferences between

the initial Hit Ratio at 10 HR0 and the Hit Ratio at 10 HRt obtained after the execution of the action at to obtain a

better estimate of performance via action at . Not only should the Hit Ratio at 10 in domainDs andDt be improved,

but also the losses LsinдleSSL and LcrossSSL acquired from the intradomain SSL tasks and interdomain SSL task

must be considered. Thus, we also introduce the losses from multiple self-supervised tasks to the designed reward.

With combinations of these two types of rewards, we can evaluate the efectiveness of ACLCDR in a more

comprehensive way. In the implementation, taking into account the diferent range of these two rewards, based

on our experience, we simply set the hyperparametersWr s1 andWr t1 as 0.001,Wr s2 andWr t2 as 100 andWr as

0.5.

Fig. 3. A toy example of ACLCDR simply presents the concept of ACLCDR.

As illustrated in Figure 3, the DDQN model takes the embedding of the graph E0 consisting of Es0 and Et0, as the

initial input state to modify the graph structure to generate an augmented graph. In this augmentation process,

we introduce adversarial learning that creates adversarial samples as diferent views for contrastive learning tasks.

After feature propagation and transfer, the model generates embeddings for contrastive learning tasks and CDR

tasks. Finally, the Hit Ratio and the losses of contrastive tasks on validation data are combined as the reward Rt
used to update the DDQN model to learn a better policy. Since the DDQN model considers individual preferences

to select the best actions for user nodes, the augmented graph is generated in an adaptive and efective way
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that preserves important associations and correlations and removes noisy interaction information in the graph

structure. The intelligent augmentation method we proposed belongs to the adaptive augmentation method,

which will be synthesized according to each node embeddings. Compared with the random-based method and

rule-based method in baselines, random-based depends on the luck of initial, while rule-based is carried out

according to the user’s group purchase behavior. Finally, our method will generate the best solution according

to each node, and then improve the quality of node embeddings, and inally strengthen the recommendation

efect.For example, the blue nodes denote the user nodes, and the yellow nodes denote the item nodes. The action

of user node 1 is to add an edge connected with item node 3 and drop edges connected with item node 1, and

user node 2 drop edges connected with item node 3. Then the model will transform the origin graph and the

augmented graph to embeddings for several contrastive learning tasks and CDR to obtain the self-supervised

losses and the Hit Ratio as total rewards. Finally, the model learns to update the policy with these two rewards

and starts a new round until the trajectory ends.

4.3 Feature Propagation and Transfer

In ACLCDR, the primary objective of feature propagation is to reine node features within the graph by aggregating

messages from their local neighborhoods. For userus andut and item is and it in each domainDs andDt , themodel

maps the user IDs into embedding vectors e
(0)
us , e

(0)
ut ∈ Rd and the item IDs into embedding vectors e

(0)
is
, e

(0)
it

∈ Rd .
As evident from Figure 4, the model takes the initial embeddings of the user and item in the two domains to

formulate [ES ,Et ] where Es is made up of [e0us , e
0
is
] and Et consists of [e0ut , e

0
it
] as input to the feature propagation

and transfer module comprised of l graph convolutional layers. In each layer, the user features and the item

features propagate information via the connections between nodes, and then the module transfers the information

of overlapping users to the relevant domain. Actually, the module focuses on transferring overlapping user

information in a dual way across the domains.

Fig. 4. Illustration of the architecture of the feature propagation and transfer module.
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For feature propagation, inspired by BiTGCF [21], we similarly simplify the feature propagation layer by removing

the activation function in NGCF [35]. Moreover, we maintain the inner product mechanism to capture information

as used in BiTGCF and add hyperparameters to control the strengths of information from neighbor nodes.

Furthermore, we employ the same layer fusionmethod as used in NGCF to capture feature information. Speciically,

for a user-item pair (u, i) within domain Ds , we present the propagation functions for user features and item

features as follows:

f sp (e
(l )
us ) = e

(l )
us + α

∑

is ∈Nus

1
√

|Nus | |Nis |
(e(l )is + e

(l )
is

⊙ e
(l )
us ) + β

∑

us ∈Nis

1
√

|Nis | |Nus |
(e(l+1)us + e

(l+1)
us ⊙ e

(l+1)
is

)

f sp (e
(l )
is
) = e

(l )
is
+ α

∑

us ∈Nis

1
√

|Nis | |Nus |
(e(l )us + e

(l )
us ⊙ e

(l )
is
) + β

∑

is ∈Nus

1
√

|Nus | |Nis |
(e(l+1)is

+ e
(l+1)
is

⊙ e
(l+1)
us )

(14)

where Nus and Nis are the 1-hop neighbors of the user us and the item is , e
(l )
us and e

(l )
is

denote the user embedding

of the user us and item embedding of the item is , respectively, ⊙ is the element-wise product function, α and β

are hyperparameters. Analogously, we obtain the propagation function of the user features and the item features

in the domain Dt .

For feature transfer, we extract domain-speciic features and domain-shared features and take both into consider-

ation for knowledge transfer in the CDR, while the existing cross-domain collaborative iltering methods only

consider utilizing common features that lack the complete information of individual features. Speciically, the

module adopts a dual transfer mechanism and can be deined as follows:

f st (·, ·) =
1

2
(γ f sp (e

(l )
us ) + (1 − γ )f tp (e

(l )
ut ) + λs f sp (e

(l )
us ) + (1 − λs )f tt (e

(l )
ut ))

f tt (·, ·) =
1

2
((1 − γ )f sp (e

(l )
us ) + γ f tp (e

(l )
ut ) + (1 − λt )f sp (e

(l )
us ) + λt f tt (e

(l )
ut ))

(15)

where γ is a hyperparameter to control the strengths of the information from the domain Ds and the information

from the domainDt , λs and λt are the user-related weight factors to control the retention ratio of the user features

of the domain Ds and Dt .

Furthermore, as mentioned above, we devised several hyperparameters to control the strengths of information

in the domain Ds or the domain Dt . The design of the parameters α and β is used to control the aggregated

information from the neighbor nodes of 1 hop and the neighbor nodes of 2 hops. When α is set to a higher

value, it means that the embeddings consider more information of the 1-hop neighbor nodes. In the same way,

when β is set higher, it means that the embeddings consider more features extracted from 2-hop neighbor nodes.

Speciically, while α is set to 1 and β is set to 0, the setting is similar to that used in BiTGCF. Moreover, the

design of the hyperparameter γ controls the extent of information between domains. If γ is set to a value greater

than 0.5, it means that more features from domain Ds will contribute to the domain-shared features rather than

domain Dt , and vice versa. In addition, we adopt the hyperparameters λs and λt to control the retention ratio of

the user features from domains Ds and Dt , respectively. Moreover, when λs and λt are set to 1.0, it indicates that

all user features in domains Ds and Dt are retained. When λs and λt are both set to 0.5, the distinctiveness in

domain-speciic features vanishes, resulting in the same users having identical features in both domain Ds and

Dt . As a consequence, the transfer mechanism aligns with that of existing cross-domain collaborative iltering

works. Finally, in ACLCDR, we simply set α as 1, which consider all the information of the 1-hop neighbor nodes,

β as 0.1, which only consider less information of the 2-hop neighbor nodes, γ as 0.5, which balances the strengths
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in the propagation and transfer of domain-shared features and domain-speciic features, and λs and λt as 0.8,

which indicates the domain-speciic features consider more information from the corresponding domain rather

than the relevant domain.

4.4 Multi-task Contrastive Learning

Graph contrastive learning has been shown to be useful in learning reined representations and helping to improve

recommendation performance [40]. Supplementary supervision of positive samples preserves the consistency

between two distinct views of the same node, while the supervision of negative samples enforces disparities

between the original node and other dissimilar nodes. Therefore, ACLCDR adopts multitask training strategy to

jointly train the model with CDR tasks and contrastive learning tasks to learn representative representations and

improve the recommendation results. The embeddings are highly vulnerable to the data containing noise or bias

against the prediction objectives, and the negative inluence can be enhanced through the message aggregation

mechanism GCNs, leading to a poor performance. Thus, we introduced adversarial learning to adaptively generate

adversarial samples for contrastive learning tasks. Based on this analysis, we believe that the model can learn to

generate high-quality embeddings to alleviate the efect of noisy data and achieve promising recommendation

results.

Inspired by the existing strategies [14, 55], we designed multiple contrastive learning tasks, including two

intradomain tasks and one interdomain task, as indicated in Figure 5. Speciically, before the implementation of

multiple contrastive learning tasks, ACLCDR irst uses the DDQN model to produce several augmented graphs in

the domain Ds and Dt with the topology augmentation strategy. Moreover, the DDQN model learns and adopts

adaptive actions that tend to preserve the important topological graph patterns from an amortized perspective and

modify the connections between user nodes and item nodes based on these customized actions. Then, ACLCDR

follows the contrastive learning paradigm to maximize the agreement of the embeddings between diferent

views of the origin graph and the augmented graph in the two domains. The intelligent augmentation method

we proposed belongs to the adaptive augmentation method, which will be synthesized according to each node

embeddings. Compared to the random-based method and rule-based method in the baselines, the random-based

method depends on the luck of the initial draw, while the rule-based method carries out augmentation based

on the user’s group purchase behavior. Finally, our method will generate the best solution according to each

node, and then improve the quality of node embeddings, and inally strengthen the recommendation efect. More

precisely, ACLCDR incorporates InfoNCE loss, a type of contrastive objective, to enforce the embeddings of the

nodes denoted the same user or the nodes denoted the same item in the two graphs, and can be discriminated

from the embeddings of other nodes represented in the same type.

Because task 1 and task 2 are intradomain SSL tasks, they can be implemented in each domain. We irst deine

the original graph as G, which is a bipartite graph consisting only of user nodes and item nodes, with the user

embedding Eu and the item embedding Ei ; and its augmented view as G̃ generated by the DDQN model, with

the user embedding Ẽu and the item embedding Ẽi . Furthermore, we also set the best ratio α , which we will

discuss in Section 5.2 to determine the number of user nodes and item nodes to be modiied in the augmentation

procedure. Next, we employ the InfoNCE loss to formulate a contrastive objective which helps the model update

by distinguishing the diference of the embeddings in the two views of the graph.

In task 1, which is a user-level task, we consider modeling the reined representation of the users. For the

embedding of the user node ui sampled from the candidate user nodes, which need to be augmented in the

origin graph view G is treated as an anchor, the embedding of the same user node ũi produced in the modiied

graph G̃ is treated as a positive sample, the embeddings of the other user nodes vi and ṽi in these two views are
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Fig. 5. Multiple contrastive self-supervised learning tasks.

naturally considered as negative samples. Speciically, negative samples were chosen from two sources. One is

the intra-view nodes that are with the anchor in the same graph; the other is the inter-view nodes that are in the

augmented graph as illustrated in Figure 5. In this way, the SSL method can increase the diversity of positive and

negative samples to capture more information from diferent views of the nodes. Thus, we can formulate the

pairwise objective for each positive pair (ui , ũi ) as:

L(ui , ũi ) = −loд
exp(s(eui , eũi ))/τ

exp(s(eui , eũi ))/τ + exp(s(eui , evi ))/τ + exp(s(eui , eṽi ))/τ
(16)

where s(·) denotes a similarity function measuring the similarity between two embedding vectors, τ is a tem-

perature parameter, eui and eũi are the embeddings of the same user obtained from the origin graph and the

augmented graph, respectively, and evi are the diferent embeddings of the user obtained from the origin graph,

and eṽi are the diferent embeddings of the user obtained from the augmented graph.

To extend the loss into all the potential positive pairs, we can deine the intradomain user-level self-supervised

loss as,

LusersinдleSSL =

∑

L(ui , ũi ) (17)

Analogously, in task 2, which is an item-level task, we can obtain contrastive learning loss Litem
sinдleSSL

with

Equation 17. With the combination of these two objective functions, we can formulate the intradomain SSL loss

as,

LsinдleSSL = LusersinдleSSL + L
item
sinдleSSL (18)

Due to the speciic property of CDR, which usually uses overlapping users as an information exchange bridge to

transfer knowledge r, we use the embeddings of overlapping users in domains Ds and Dt where the domains are

highly correlated as diferent views to contrast the diferences. Task 3, which is mainly designed for CDR, can not

only reine the overlapping user embeddings but also alleviate the negative impact of noisy data. Speciically, for

the embedding of the user node us selected from the domain Ds is set as the anchor, the embedding of the same
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node ut obtained from the domain Dt is set as a positive sample, and the embeddings of the other user nodes vs
and vt in the two domains are seen as negative samples. As stated above, the contrastive learning technique can

help the CDR prevent from the efect of noisy data to obtain reined user representations for knowledge transfer,

the pairwise objective function is deined as:

L(us ,ut ) = −loд
exp(s(eus , eut ))/τ

exp(s(eus , eũt ))/τ + exp(s(eus , evs ))/τ + exp(s(eus , evt ))/τ
(19)

where s(·) calculates the similarity between two embedding vectors, τ denotes a temperature parameter, eus and

eut are the embeddings of the same user in domains Ds and Dt , respectively, and the diferent embeddings of

users evs and evt are obtained from domains Ds and Dt , respectively.

To extend the loss into all the node pairs, we can deine the interdomain SSL loss as,

LcrossSSL =
∑

L(us ,ut ) (20)

In this way, we believe that the model can learn to reine the representations of users and items from these three

tasks to improve the CDR in the contrastive SSL fashion. Moreover, we adopt a multitask training strategy to

jointly optimize the CDR model and deine the main objective function as:

L = Lmain + λ1LsinдleSSL + λ2LcrossSSL + λ3 ∥ Θ ∥22 (21)

where Lmain is the main supervision loss that will be deined in Section 4.5, Θ denote the set of model parameters

in the main supervision tasks, since LsinдleSSL and LcrossSSL do not introduce additional parameters, λ1, λ2 and

λ3 denote the hyperparameters used to control the strengths of the diferent contrastive learning tasks and the

L2 regularization, respectively. Based on our experience, we simply set λ1, λ2 and λ3 to an appropriate value

as 0.00001 to ensure the model can learn the information from contrastive learning tasks and avoid excessive

inluence of the tasks.

4.5 Model Training

In this work, we mainly focus on developing an adversarial contrastive learning cross-domain framework

that can enhance user and item embeddings with multiple contrastive learning tasks and achieve considerable

recommendation performance in cross-domain tasks. Following the previous work [21], we adopt the binary

cross-entropy loss function, a kind of pair-wise loss function, as the main loss function to train the model with

the main cross-domain task. Speciically, the objective function is presented as:

L(r̂ui , rui ) = − 1

N

N
∑

(u,i)∈R+∪R−
ruiloдr̂ui + (1 − ruiloд(1 − r̂ui )) + λ ∥ Θ ∥22 (22)

where N is the number of entries comprised of an user, an item, and a label, R+ is the set of the observed userśitem

interaction history, R− is the set comprised of the random samples selected from the unobserved interaction

history, and λ is a hyperparameter stated in Equation 21 controls theL2 regularization extent to prevent overitting.

In this way, we can regard L( ˆrui , rui ) as the main loss of supervised learning tasks derived from both the domains

Ds and Dt .

ACM Trans. Knowl. Discov. Data.



Adaptive Adversarial Contrastive Learning for Cross-Domain Recommendation • 21

In this work, we optimize the parameters in the model with the mini-batch Adam technique and adopt the

dropout mechanism to prevent overitting. Moreover, we employ a multitask learning strategy to jointly optimize

the model parameters with the contrastive learning loss and the CDR loss. As presented in Equation 21, we

transform the inal joint loss function and deine as:

L = L(r̂ sui , r sui ) + L(r̂ tui , r tui ) + λ1LsinдleSSL + λ2LcrossSSL (23)

Since ACLCDR is a bidirectional transfer model, the data from the two domains are used simultaneously to train

the recommendation, but are merely evaluated separately for CDR.

5 EXPERIMENTS

This section focuses on investigating research questions related to ACLCDR. First, we will introduce detailed

experimental settings on benchmark datasets, state-of-the-art baseline methods, and evaluation metrics for CDR.

Next, we conduct extensive experiments on nine CDR tasks from Amazon and Douban and present the results to

demonstrate that ACLCDR framework can actually improve the efectiveness of CDR.

Ð RQ1: How does our proposed ACLCDR compare with various adversarial contrastive learning methods for

CDRs?

Ð RQ2: How does the proposed ACLCDR perform in CDR tasks compared with other state-of-the-art methods?

Ð RQ3: How does each of the contrastive learning tasks help ACLCDR improve the performance of CDR?

Ð RQ4: How do diferent parameters afect the efectiveness of the proposed ACLCDR framework?

5.1 Experimental Setings

5.1.1 Datasets. Following most previous works [2, 21, 53], we conducted experiments using nine real-world

cross-domain tasks obtained from Amazon and Douban, and the statistics of the datasets used in the tasks are

summarized in Table 1.

Table 1. Statistics of the datasets for cross-domain recommendation tasks

CDR Tasks
Domain #Users #Items #Interactions Density

Source Target Source Target Overlap Source Target Source Target Source Target

Task 1 Elec Cell 49,072 5,730 2,904 32,919 14,571 105,499 46,372 0.1104% 0.1096%

Task 2 Music Movie 26,876 40,928 6,495 58,267 42,901 318,577 379,666 0.0842% 0.1363%

Task 3 Sport Cloth 10,849 13,058 1,284 14,793 15,703 27,043 23,545 0.1424% 0.1168%

Task 4 Music Cell 26,876 5,730 200 8,231 2,525 9,914 4,316 0.6022% 0.8547%

Task 5 Elec Cloth 49,072 13,058 2,077 26,087 21,436 63,242 34,143 0.1167% 0.0767%

Task 6 Sport Movie 10,849 40,928 850 9913 17,372 16,781 40,446 0.1992% 0.2739%

Task 7 Book* Movie* 2,071 2,711 1,261 3,222 9,555 70,641 1,133,420 1.6452% 5.8956%

Task 8 Music* Movie* 1,603 2,711 778 2,546 9,555 48,160 1,133,420 2.2670% 6.7628%

Task 9 Book* Music* 2,071 1,603 616 3,222 2,546 70,641 48,160 1.9055% 2.2906%

These nine cross-domain tasks from various domains contain the largest number of implicit interactions that

occur in our cross-domain experiment. Moreover, following the previous works, we choose the most commonly

ACM Trans. Knowl. Discov. Data.



22 • Hsu, et al.

used datasets including three coupled datasets from Amazon and three datasets from Douban. Since the ex-

perimental data in our study were collected from e-commerce websites, user behavior data on these websites

are considered observational rather than experimental, and purchasing behaviors are highly dependent on the

exposure mechanisms of the systems. This phenomenon can result in noisy interactions and biases in the data,

which means that the data we collected may not fully relect users’ true preferences. Several other studies [45, 56]

have also aimed to debias or remove noisy interactions when constructing personalized recommendation systems

using the same dataset as ours. Speciically, the coupled datasets from Amazon are highly correlated, including

Electronics (Elec) & Cell Phones and Accessories (Cell), and CDs and Vinyl (Music) & Movies and TV (Movie), and

Accessories, Sports and Outdoors (Sport) & Clothing, Shoes and Jewelry (Cloth). Furthermore, three datasets from

Douban are also have high correlation, such as Book (Book*), Movie (Movie*) and Music (Music*). To demonstrate

the outstanding transfer capability of ACLCDR in weak correlation datasets, the cross-coupling of the three pairs,

Music & Cell, and Elec & Cloth and Sport & Movie are considered to form the remaining CDR tasks.

In the data preprocessing stage, for these nine paired datasets, we initially convert them into implicit data, where

each entry is labeled as 0 or 1, indicating whether the user has interacted with the item or not. Subsequently, we

ilter the datasets to create 10-core datasets, which require retaining users with more than 10 ratings and items

rated by more than 10 users. Additionally, we extract overlapping user data in both domains for the evaluation

of CDR tasks. Even for long-tail items or users, suicient training data is crucial to fulill the requirements of

our proposed method. This data preprocessing step aimed to mitigate the impact of high-degree nodes on the

recommendation results. Our research methodology adopts a similar approach to previous studies. However, our

goal is to obtain more representative and efective embeddings, and our hypothesis is that noise bias is prevalent in

multi-core data. Therefore, through our research approach, we can efectively solve this problem and enhance the

recommendation results. The code is available at https://gitfront.io/r/user-3656521/V3pW4nAooAxG/ACLCDR/.

5.1.2 Baseline Methods. In the irst experiment, we compare ACLCDR with the following adversarial SSL

methods:

Ð Random-N : This method introduces the edge dropout probability to randomly drop the node from the

original graph to generate another view of the original graph for contrastive SSL.

Ð Random-E: This method stochastically selects an edge to be removed from the original graph, namely, the

edge dropout, to obtain an augmented graph view for contrastive SSL.

Ð Random-G: This method employs random walk [33] based on probability theory to construct a diferent

subgraph and utilize it as a diferent view of the original graph for contrastive SSL.

Ð Popular: This method chooses the most popular items based on the number of interactions, indicating that

the user has purchased the item, to create connections with users and produce a new view of the original

graph. Popular selects the most fashionable items according to user interactions, which assumes that each

user may have the same or similar preferences with the most purchased items.

Ð Preference: This method considers most user preferences with implicit information to calculate the average

score of each item based on the rating data. Then, it adds an edge between users and the highest-rating

items and discards an edge between users and the lowest-rating items to generate an augmented graph for

contrastive SSL. Preference chooses items with the highest rating based on explicit information, which also

assumes that user’s purchasing behaviors are mainly inluenced by the rating information.
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Moreover, in the second experiment, we select the following state-of-the-art CDR methods as baselines without

comparing with single-domain models since the existing works have proved transfer learning mechanism is

powerful to leverage auxiliary information in cross-domain models and achieve better results.

Ð CoNet [17]: It proposes an efective dual transfer learning technique based on deep neural networks to

jointly learn the features and transfer domain knowledge for CDR.

Ð PPGN [51]: It adopts a uniied multitask training strategy to jointly learn user preferences through multiple

graph convolution layers by fusing the item-user interaction information across the domains.

Ð BiTGCF [21]: It is a graph-based CDR model that can extract high-order correlation in userśitem interactions

through multiple well-designed feature propagation layers and transfer knowledge with common users as the

transfer bridge across two domains.

Ð CDRIB [1]: It utilizes the information bottleneck principle to learn debiased features from domain-speciic

information with two well-designed regularizers to enforce the representation for recommendation. The work

is the irst to capture the domain-shared information and utilize it to train unbiased representations for cold

start users.

Ð ETL [7]: It proposes an equivalent transformation model to learn the joint distribution of overlapping user

behaviors in two domains to reine domain-shared features and domain-speciic features for CDR.

Furthermore, in the third experiment, we verify the performance of three variants of ACLCDR based on diferent

contrastive learning tasks, namely u-ACLCDR, i-ACLCDR and c-ACLCDR. These variants are expressed as

follows:

Ð u-ACLCDR: This variant considers user-level information in single-domain based on the intradomain con-

trastive learning task. The model learns domain-speciic features by distinguishing the diferent views of user

nodes to reine the embeddings.

Ð i-ACLCDR: This variant considers item-level information in single-domain based on the intradomain con-

trastive learning task. The model captures domain-speciic features by contrasting the original view and the

augmented view of item nodes to obtain reined embeddings.

Ð c-ACLCDR: This variant learns the reined representations in consideration of cross-domain information

extracted from the views of same user nodes, which are overlapping users, in the source domain and the

target domain.

5.1.3 Evaluation Metrics. To evaluate the performance of the CDR tasks, we follow the experimental settings in

the previous work [7], which adopts the widely used leave-one-out evaluation method. First, we prepare the

validation set and test set by randomly selecting an item from each user’s individual historical interactions, and

the remaining items are used as the train set. Then, we randomly choose 99 items as negative samples from the

items with which the user did not interact before. Therefore, the model would predict each user’s preferences

with 100 records, including 1 positive sample and 99 negative samples, and output top-N items. Finally, we

introduce two evaluation metrics, the Hit Ratio (HR) and the Normalized Discounted Cumulative Gain (NDCG),

to measure the ranking performance of the recommendation model:

Ð HR@K : Hit Ratio (HR) evaluates whether the test item is in the top-K item ranking list. (1 for hit and 0 for no

hit)
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Ð NDCG@K :Normalized Discounted Cumulative Gain (NDCG) evaluates the ranking quality and assign higher

score to the hits at higher positions in the top-K item ranking list.

For both evaluation metrics, we simply set K to 10 and truncate the length of the ranked list to 10, which is

followed by the existing work, to present reasonable results of CDR. Therefore, HR measures whether the test

item is in the top-10 item list and NDCG measures whether the test item is present in the higher position in the

top-10 item list.

5.1.4 Parameters Setings. For the implementation of all the state-of-the-art baselines we compared with in

the experiment, we used the code released by the author and changed the data pipeline. For CoNet with deep

structure, we adopt the optimal coniguration in their paper; the hidden layer coniguration is set as [64, 32, 16,

8] and the negative sampling ratio is set as 4. For the implementation of PPGN, to satisfy the states of our paper,

we set the negative sampling ratio to 4, and set the number of GCN layers from 3 to 5. For BiTGCF, we use the

optimal settings in their paper and set the number of embedding propagation layers to 3, the embedding size to

[64, 64, 64], and the negative sampling ratio to 4. For CDRIB, we set the number of graph encoding layers from 3

to 5, the embedding size as [128, 128, 128], and change the number of negative samples to 99 to meet the states of

our paper. For ETL, we use the best coniguration according to the paper; the embedding size is set as 200 and the

dropout ratio as 0.5.

Speciically, in our proposed ACLCDR, we implement the method in Tensorlow and set the embedding size to 16,

the number of feature propagation layers to 3, the layer size to [16, 16, 16], the dropout ratio to 0.1, the learning

rate to 0.001, the mini batch size to 1024, the negative sampling ratio to 4, and the weight of intradomain and

interdomain SSL to 0.0001. Note that we adopt an early stopping method to check the convergence of ACLCDR

when HR@10 in both the domains stops increasing for 5 successive epochs. To avoid the impact on randomness

in the experiment and improve the validity and robustness of the results, we simply set 10 random seeds and

continue testing 10 times to measure performance and present the average values. Furthermore, for CDR, we

simultaneously obtain the results of the two datasets in diferent tasks.

5.2 Adversarial Contrastive Learning Approach Comparison (RQ1)

ACLCDR introduces adversarial learning to contrastive learning and leverage multitask training strategy to

jointly train the model with several contrastive learning tasks to enhance representation learning for CDR. In the

ACLCDR framework, the core concept is to generate sensible augmented samples for contrastive learning tasks.

Therefore, the number of nodes considered to be modiied can greatly afect the enhancement performance of

ACLCDR. In fact, since the bipartite graph consists of user nodes and item nodes, the augmentation implemented

on the user node is equivalent to the implementation on the item node where there exists an interaction between

them. Therefore, ACLCDR only considers the selection of the individual user nodes to be modiied, as well as

the baselines, such as Popular and Preference. To determine the best ratio of user nodes to be modiied and

compare with diferent augmentation methods, we incorporate ive contrastive learning approaches based on

adversarial learning with our CDR model to prove the applicability of our augmentation module, namely DDQN,

in ACLCDR. Note that Random-N , Random-E, Random-G are devised by random theory that can stochastically

choose a speciic ratio of user nodes and item nodes to be augmented. Table 2 shows the summarized results of

the experiments on Elec & Cell dataset in terms of two metrics HR@10 and NDCG@10. We use the SSL Ratio to

denote the number of nodes to be modiied. The best performance in each row is shown in boldface, and the

second highest value in each row is underlined.
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Table 2. Top-K Performance comparison in terms of HR and NDCG on Electronic & Cellphone. The best performance in each

row is shown in boldface, and the second highest value in each row is underlined.

SSL Ratio Dataset Metrics
Adversarial Contrastive Learning Methods Ours

Random-N Random-E Random-G Popular Preference ACLCDR

1%

Elec
HR 0.6057 0.6112 0.5926 0.6030 0.6043 0.6746

NDCG 0.3956 0.3994 0.3717 0.3907 0.3911 0.4641

Cell
HR 0.4948 0.5059 0.4463 0.4236 0.4180 0.5496

NDCG 0.3106 0.3150 0.2743 0.2593 0.2544 0.3573

10%

Elec
HR 0.6126 0.6188 0.6140 0.6095 0.6092 0.6791

NDCG 0.3937 0.3955 0.3982 0.3934 0.3967 0.4718

Cell
HR 0.4652 0.4969 0.4935 0.4198 0.4480 0.5375

NDCG 0.2872 0.3119 0.3189 0.2577 0.2805 0.3522

30%

Elec
HR 0.6360 0.6291 0.6309 0.6154 0.5878 0.6884

NDCG 0.4239 0.4054 0.4045 0.3981 0.3738 0.4653

Cell
HR 0.5420 0.5000 0.5007 0.4370 0.3784 0.5492

NDCG 0.3519 0.3202 0.3184 0.2746 0.2236 0.3615

50%

Elec
HR 0.6649 0.6405 0.6646 0.6098 0.5975 0.6832

NDCG 0.4515 0.4336 0.4625 0.3924 0.3852 0.4728

Cell
HR 0.5451 0.5513 0.5430 0.4360 0.4084 0.5324

NDCG 0.3600 0.3579 0.3543 0.2743 0.2520 0.3418

70%

Elec
HR 0.6019 0.6333 0.6250 0.6002 0.6040 0.6784

NDCG 0.3864 0.4155 0.4069 0.3873 0.3888 0.4747

Cell
HR 0.4807 0.5086 0.5131 0.3998 0.4091 0.5196

NDCG 0.3069 0.3316 0.3318 0.2427 0.2539 0.3346

100%

Elec
HR 0.6009 0.6026 0.5978 0.6016 0.6030 0.6643

NDCG 0.3813 0.3879 0.3847 0.3868 0.3899 0.4577

Cell
HR 0.4528 0.4531 0.4948 0.3994 0.4273 0.5275

NDCG 0.2929 0.2860 0.3199 0.2468 0.2683 0.3395

For Random-N , when the SSL ratio is set as 50%, HR@10 is 0.6649 and NDCG@10 is 0.4515 on Elec; HR@10

is 0.5451 and NDCG@10 is 0.3600 on Cell, which means that half of the nodes in the graph are considered to

be removed. For Random-E, we can also obtain the best results when the SSL ratio is set as 50%, its HR@10 are

0.6405 and 0.5513 and NDCG@10 are 0.4336 and 0.3579 on Elec & Cell, respectively. Moreover, we can obtain the

best performance of Random-G , the HR@10 and NDCG@10 are 0.6646 and 0.4625 on Elec, and 0.5430 and 0.3543

on Cell, respectively.Random-N , Random-E and Random-G all achieve their best results when the SSL ratio is set

as 50%. We conclude that the reason might be that half of the nodes are selected to be augmented can not only

preserve complete topological information of the original graph, but also alleviate the efect of noise interactions

between user nodes and item nodes. For Popular method, the best results of HR@10 and NDCG@10 on Elec &

Cell are 0.6154, 0.3981, 0.4370 and 0.2746, respectively, when the SSL ratio is set to 30%. For Preference, when the

SSL ratio is set to 10%, the best HR@10 and NDCG@10 are 0.6092 and 0.3967 on Elec and 0.4480, 0.2805 on Cell,

respectively. Surprisingly, Popular and Preference only take 30% and 10% on nodes to be modiied, which are

less than the SSL ratio set in in Random-N , Random-E and Random-G . The reason might be that since these two

methods are devised according to user preferences, the augmentation is more sensible than random methods.

However, Random-N , Random-E and Random-G outperform Popular and Preference, because the individual

preferences across users are completely diferent and even the personal preference can evolve over time. Thus,

preference biases in the augmented samples can deteriorate representation learning and lead to poor recommen-

dation. Furthermore, random theory can comparatively mitigate the efect of preference bias, since it randomly

selects nodes to drop. Despite the success result of these ive baselines, which all outperform the state-of-the-art

baselines we will discuss later in Section 5.3, ACLCDR still achieves superior performance compared with them.

In addition, ACLCDR outperforms the best baseline Random-G by 3.5% and 3.1% on HR@10 and NDCG@10 on
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Elec dataset; ACLCDR outperform Random-G by 0.75% and 0.42% on HR@10 and NDCG@10 on Cell dataset.

Since ACLCDR can lexibly generate augmented samples based on the individual property of each node and

topological information in the graph, it is able to preserve the information from the original graph and mitigate

the efect of noise or bias in the userśitem interactions.

In addition, according to Table 2, as the SSL ratio increases or decreases, all the baseline results worsen. This was

also observed when our proposed ACLCDR framework was implemented. We believe that the number of nodes to

be modiied should be appropriate. Even if the SSL ratio is too small, which implies that the topological information

can be completely preserved, noise or bias interactions still exist and lead to poor performance of contrastive

learning. When the SSL ratio is set too high, the augmented samples cannot efectively maintain the structural

information of the original graph. In conclusion, ACLCDR achieves the best result among the evaluated baselines

on the coupled dataset Elec & Cell, when the SSL ratio is set to 30%, which indicates that the augmentation of

30% of the user nodes in the graph is the best ratio that not only preserves the topological information of the

graph but also exploits the potential high-order connections to obtain high-quality representations for enhancing

the CDR.

5.3 Performance Comparison with State-of-the-art Models (RQ2)

ACLCDR is mainly devised on the basis of the cross-domain framework, which adopts a dual transfer mechanism

to transfer knowledge across the domains. To verify the capability of ACLCDR, we compared the model with

several latest state-of-the-art CDR baselines using nine real-world cross-domain tasks obtained from Amazon

and Douban. Speciically, these nine tasks can be organized into two types of tasks, such as highly correlated

joint datasets and weakly correlated coupled datasets, to show the powerful transfer ability of the ACLCDR.

The experimental results were validated using two metrics, viz. HR@10 and NDCG@10, to equitably measure

the abilities of the diferent methods. To provide a comprehensive view, we separate the results into Table 3

and Table 4 depending on the correlations between the joint datasets used in the cross-domain tasks. Similarly,

the best performance in each row is shown in boldface, and the second highest value in each row is underlined.

Based on Table 3 and Table 4, we can draw the following key conclusions:

Ð CDRIB performs the worst on most tasks as the model is primarily designed for cold-start issues. CoNet

performs better than CDRIB, demonstrating the efectiveness of the dual transfer mechanism in the cross-

domain model. Surprisingly, Compared with CoNet, PPGN exhibits a worse performance on Elec & Cell and

Sport & Cloth, while achieving better results on Music & Movie, Book* & Movie*, Music* & Movie*, and

Book* & Music. Furthermore, Zhao et al. [51] showed that PPGN outperforms CoNet on the Book & Movie

and CD & Music datasets. Therefore, we believe that the datasets that exhibit large diferences in the data

distribution and are more sparse might cause poor recommendations, because PPGN utilizes the joint graph of

the two domains using the same feature propagation module to obtain the embeddings. Furthermore, BiTGCF

achieves better results than CoNet and PPGN, demonstrating that well-designed graph feature propagation

and transfer layers can efectively help the model obtain reined representations. In addition, ETL also has

better recommendation performance than CoNet and PPGN, because ETL precisely extracts domain-shared

features and domain-speciic features by learning of the joint data distribution of the behaviors of overlapping

users between domains. Despite the power of the equivalent transformation proposed by ETL, BiTGCF still

outperforms ETL in most cross-domain tasks. We guess the reason is that BiTGCF takes advantage of graph

data, which are provided with implicit information, with multiple well-designed propagation layers to capture

latent information from the topological structure between users and items and transfer knowledge across the

domains.
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Table 3. Comparison of Top-K performance in terms of HR and NDCG in six highly correlated coupled datasets from Amazon

and Douban. The best performance is in boldface and the second high value is underlined.

Dataset Metrics
Cross-domain Methods Ours

CoNet PPGN BiTGCF CDRIB ETL ACLCDR

Elec
HR 0.4314 0.4206 0.5465 0.4209 0.4327 0.6884

NDCG 0.2661 0.1712 0.3416 0.2499 0.2934 0.4653

Cell
HR 0.4976 0.5116 0.5475 0.4335 0.4682 0.5492

NDCG 0.2919 0.2350 0.3518 0.2489 0.2738 0.3615

Music
HR 0.6110 0.6271 0.6308 0.2197 0.6231 0.7886

NDCG 0.3745 0.3466 0.3885 0.1041 0.3944 0.5619

Movie
HR 0.5490 0.6355 0.6693 0.2413 0.6660 0.7781

NDCG 0.3280 0.3926 0.4319 0.1160 0.4364 0.5404

Sport
HR 0.2780 0.1816 0.3886 0.3204 0.4424 0.5467

NDCG 0.2705 0.0925 0.2071 0.1749 0.2890 0.3732

Cloth
HR 0.3917 0.1629 0.3629 0.3002 0.3953 0.5280

NDCG 0.2087 0.0988 0.1795 0.1757 0.2908 0.3405

Book*
HR 0.3799 0.4629 0.4913 0.2786 0.4473 0.5095

NDCG 0.2589 0.3187 0.2893 0.1512 0.2561 0.3141

Movie*
HR 0.5582 0.5851 0.6144 0.4504 0.6647 0.6867

NDCG 0.3370 0.3503 0.3792 0.2430 0.4258 0.4279

Music*
HR 0.3448 0.4021 0.4675 0.1924 0.4408 0.4992

NDCG 0.2333 0.2372 0.2631 0.0989 0.2353 0.3046

Movie*
HR 0.5443 0.5662 0.6004 0.4332 0.6206 0.6809

NDCG 0.3302 0.3285 0.3628 0.2293 0.3830 0.4273

Book*
HR 0.4208 0.4263 0.4766 0.2790 0.4171 0.5021

NDCG 0.2598 0.2348 0.2757 0.1497 0.2438 0.2960

Music*
HR 0.3702 0.4591 0.4617 0.2308 0.4029 0.4790

NDCG 0.2230 0.2537 0.2646 0.1161 0.2316 0.2808

Table 4. Comparison of Top-K performance in terms of HR and NDCG in three joint datasets with low correlation. The best

performance is in boldface and the second high value is underlined.

Dataset Metrics
Cross-domain Methods Ours

CoNet PPGN BiTGCF CDRIB ETL ACLCDR

Music
HR 0.3950 0.2060 0.1911 0.1818 0.4506 0.7350

NDCG 0.2522 0.1547 0.0822 0.0769 0.2957 0.4967

Cell
HR 0.2700 0.1658 0.4654 0.1656 0.5422 0.6700

NDCG 0.1526 0.0805 0.2278 0.0973 0.3489 0.4684

Elec
HR 0.5643 0.3309 0.4689 0.1884 0.5038 0.6774

NDCG 0.2787 0.1726 0.2888 0.0910 0.3361 0.4728

Cloth
HR 0.2301 0.2876 0.5821 0.2655 0.3117 0.6225

NDCG 0.2132 0.1557 0.3251 0.1330 0.1422 0.3713

Sport
HR 0.3706 0.0342 0.3871 0.3416 0.4005 0.5518

NDCG 0.1964 0.0122 0.2101 0.1884 0.2421 0.3656

Movie
HR 0.4694 0.1449 0.5024 0.3837 0.4183 0.7424

NDCG 0.2555 0.0488 0.2913 0.2190 0.2466 0.5124
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Ð Despite the great capability of the state-of-the-art baselines, ACLCDR still achieves the best performance in

terms of HR@10 and NDCG@10 among the baselines between domains on all datasets with high correlation,

showing that the design of multiple contrastive learning tasks can actually enhance representation learning

through the well-designed feature propagation and transfer module. Speciically, ACLCDR outperforms the

best baselines by 25%, 42.5%, 16.3% and 23.8% in terms of HR@10 and NDCG@10 on Music & Movie task

from Amazon. In fact, ACLCDR also outperform the best baselines by 6.8%, 15.8%, 9.7% and 11.6% in terms

of HR@10 and NDCG@10 on Music* & Movie* task from Douban, showing ACLCDR can have a better

recommendation result on the datasets that are less sparse. Taking Task 2 as an example, the average number

of items purchased per person in the source domain is 11.85. Experimental results have shown that ACLCDR

outperforms baselines by 25.02% in HR, and by 44.36% in NDCG. The results are higher than task 1 and task

3 which have lower-degree nodes. As previously mentioned, limitations arising from high-degree nodes

can have a greater impact on learning representative embeddings than long-tail items when dealing with

this type of dataset pairing. However, our experiment results demonstrate that ACLCDR can efectively

alleviate this issue. Moreover, multitasks learning strategy can help the model to enhance the representation

learning and alleviate the negative impact of noisy and bias in the userśitem interaction to improve the

performance of cross-domain model. As proved in the work [40], the model exploits the training strategy

with multiple contrastive learning tasks that can empower the ability of representation learning in the graph

convolutional network-based recommender model. In conclusion, ACLCDR introduces multitasks learning

strategy to construct several contrastive learning tasks and train the cross-domain model with them to reine

the representations of user and item and efectively promote the performance for CDR.

Ð Furthermore, Table 4 compares the recommendation performance of the of the latest state-of-the-art cross-

domain models, based on two widely used metrics HR and NDCG, for the tasks comprised of three coupled

datasets with a weak correlation. Likewise, CDRIB still has the worst performance in most cross-domain

scenarios. The result might be caused by the model architecture, since CDRIB is designed mainly to solve

cold-start problems. However, PPGN achieves worse performance than CDRIB in some tasks and is even

worse than CoNet on most datasets, which shows that the weak correlation datasets can cause poor results,

since PPGN trains the model on the joint graph across the domains that might have negative biases. Moreover,

CoNet is beaten by the remaining cross-domain baselines because the dual transfer mechanism is not well

designed, which can lead to a hard negative information transfer problem. Surprisingly, the performance

of BiTGCF and ETL is almost the same, sometimes BiTGCF outperform ETL, but sometimes vice versa.

BiTGCF outperform other baselines on most datasets, showing the great ability of the well-designed feature

propagation and transfer layer to obtain high-quality representations for precise user preferences. In the same

way, ETL attains better results than other baselines, since its transformation model can capture domain-share

and domain-speciic features. Although the powerful propagation and transfer module devised by BiTGCF, and

the mechanism to model data distribution in ETL to obtain a good recommendation performance, ACLCDR

still outperform all the state-of-the-art baselines. Speciically, ACLCDR outperforms the best baseline by

37.8%, 51%, 47.8% and 76% in terms of HR@10 and NDCG@10 on Sport & Movie task from Amazon, which

demonstrate the powerful applicability of feature propagation and transfer module and indicates that the

multitask training strategy with contrastive learning tasks can actually help CDR to enhance representation

learning and efectively alleviate the impact of noise and bias in the item-user interactions to achieve promising

recommendation performance.

Regarding the experimental results presented in Tables 3 and 4, we have additionally conducted a hypothesis test

(T-test) for performance comparison. When comparing HR and NDCG between our method and the baselines

in six highly correlated coupled datasets from Amazon and Douban, our experimental group outperformed

the control group, with a p-value of 0.0013. Similar results were also observed in three joint datasets with low
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Table 5. Performance comparison of three distinct variants of ACLCDR.

Dataset Metrics
Model Variants Ours

w/oSSL u-ACLCDR i-ACLCDR c-ACLCDR ACLCDR

Elec
HR 0.6174 0.6825 0.6419 0.6508 0.6884

NDCG 0.4075 0.4722 0.4315 0.4338 0.4653

Cell
HR 0.4807 0.5379 0.5320 0.5379 0.5492

NDCG 0.2984 0.3456 0.3420 0.3458 0.3615

Music
HR 0.5561 0.5561 0.5654 0.5569 0.5693

NDCG 0.3641 0.3641 0.3711 0.3655 0.3782

Movie
HR 0.5319 0.5343 0.5327 0.5452 0.5537

NDCG 0.3450 0.3452 0.3482 0.3529 0.3545

Sport
HR 0.7085 0.7860 0.7817 0.7541 0.7886

NDCG 0.4709 0.5575 0.5539 0.5163 0.5619

Cloth
HR 0.6716 0.7777 0.7746 0.7549 0.7781

NDCG 0.4349 0.5379 0.5393 0.5146 0.5404

correlation, yielding a p-value of 0.0006. The p-values for both tests reject the null hypothesis, indicating a

signiicant diference between our method and the baselines.

5.4 Comparison of the Improvement on Diferent Contrastive Learning Tasks (RQ3)

Since ACLCDR adopts multitasks training strategy to jointly update the model parameters, this experiment is to

investigate the utility of each contrastive learning tasks. Based on the property of CDR model, we devise multiple

contrastive learning tasks, including intradomain tasks and interdomain task. Actually, interdomain task is mainly

designed for CDR, which can help the model to enhance the capability of bidirectional transfer module. Table 5

shows the results of the ablation test in terms of HR@10 and NDCG@10, demonstrating that the contrastive

learning tasks actually help reine the representations and improve the performance of the cross-domain model.

Speciically,w/o SSL variant, which is a degenerate version of ACLCDR, presents that ACLCDR train without any

SSL tasks; u-ACLCDR variant indicates that ACLCDR train with user-level SSL tasks, which is an intradomain

SSL task that implements contrastive learning only on user nodes to help the model to capture user information;

i-ACLCDR variant is a similar version of u-ACLCDR, which is also an intradomain contrastive learning task

but implement contrastive learning only on item nodes to help the model extract item information. Moreover,

c-ACLCDR variant is mainly learned with interdomain SSL task, which models the information of the overlapping

users in the two domains to help the feature propagation and transfer module reine the embeddings.

As stated in Table 5, the u-ACLCDR variant outperforms the w/o SSL variant for all the cross-domain tasks,

indicating that the user-level intradomain contrastive learning tasks can help the model focus on the extraction

of user information. Speciically, the u-ACLCDR variant outperforms thew/o SSL variant by 9.5%, 13.7%, 10.6%

and 13.7% in terms of HR@10 and NDCG@10 on Elec & Cell task. In the same way, i-ACLCDR variant also

outperformsw/o SSL variant on all tasks, which demonstrate that item-level intradomain task can help the model

to enhance representation learning, especially on item nodes. Precisely, i-ACLCDR variant also outperforms

w/o SSL by 9.4%, 15%, 13.3%, 19.4% on Music & Cell task. Moreover, c-ACLCDR is the model trained with

interdomain task, which are mainly devised for CDR that use the views of overlapping user nodes in diferent

domains for contrastive learning tasks to capture the valuable transfer information that is necessary to enhance

representation learning and improve the ability of knowledge transfer to achieve better recommendation results

of the cross-domain model. In fact, c-ACLCDR variant also outperformsw/o SSL variant by 6%, 8.8%, 11% and

15.5% in terms of HR@10 and NDCG@10 on Music & Movie task. In conclusion, contrastive learning tasks
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can help the cross-domain model to obtain reined embeddings for efectively improving the recommendation

performance. Surprisingly, the three variants u-ACLCDR, i-ACLCDR and c-ACLCDR can all outperform the

state-of-the-art baselines, proving that contrastive learning can efectively help the cross-domain model reine

the representations.

However, from Table 5, we can deduce that compared with u-ACLCDR and i-ACLCDR, c-ACLCDR exhibits

signiicantly degraded performance. This performance degradation was observed because the number of over-

lapping users only accounts for a small proportion of all the users, and the information extracted from each

single domain is more important and informative than that extracted from the interdomain task. Interestingly,

we also observe that when the dataset is imbalanced, where the diference between the number of users in the

source domain and in the target domain is too large, c-ACLCDR variant can outperform u-varint and i-variant.

We conclude that the reason might be that the interactions in each single domain have noise or bias against the

predictive objective. When the dataset is more imbalance, the noise data can enlarge the negative inluence and

dramatically deteriorate the recommendation. ACLCDR takes advantage of user-level and item-level intradomain

contrastive learning tasks to help the feature propagation layers reine the representations of users and items,

and interdomain contrastive learning tasks to enhance the knowledge transfer mechanism. With the help of

these two types of SSL tasks, the ACLCDR framework can achieve the best performance on all datasets, even if

the datasets contain a weak correlation.

5.5 Hyperparameter Sensitivity (RQ4)

In ACLCDR, we utilize the hyperparameters λ1 & λ2 to augment the recommendation objective with diferent loss

objective weights. To investigate how these hyperparameters afect the performance of ACLCDR, we conduct

extensive experiments to examine their sensitivity. Since our proposed ACLCDR leverages multitask training

strategy with contrastive learning tasks to jointly optimize the model parameters, we conducted extensive

experiments to study the sensitivity of two hyperparameters λ1 and λ2. We devised several contrastive learning

tasks, including intradomain tasks and interdomain tasks, and use λ1 and λ2 to control the strength of SSL tasks.

We analyzed the inluence of the hyperparameters λ1 and λ2 in the range from 0.000001 to 1.0, and present the

results in Figure 6.

In Figure 6(a) and 6(b), it can be observed that when λ1 increases and is higher than 0.0001, the performance of

ACLCDR gets worse. Speciically, when λ1 is set to 1.0, ACLCDR achieves the worst performance, indicating

that the model is overly focused on intradomain contrastive learning tasks and neglects the main supervision

recommendation task. On the other hand, when λ1 decreases and is less than 0.0001, the performance of ACLCDR

slightly degrades. Based on the results presented in Figure 6(a) and 6(b), the best performance of ACLCDR is

achieved when λ1 is set to 0.0001. Moreover, Figure 6(c) and 6(d) shows that when λ2 increases and is higher than

0.0001, ACLCDR exhibits the worst performance. However, decreasing λ2 does not severely afect the ACLCDR

results. As demonstrated in the ablation test, the inluence of interdomain contrastive learning tasks is less than

the impact of intradomain contrastive learning tasks. Therefore, we conclude that the results of ACLCDR are less

afected by λ2 than λ1.

In summary, ACLCDR efectively incorporates the information from contrastive learning tasks by appropriately

weighting the SSL loss with hyperparameters λ1 and λ2. However, if the model is trained with too much or too

little information from SSL tasks, the recommendation performance may be compromised.
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(a) HR (b) NDCG

(c) HR (d) NDCG

Fig. 6. Top K performance under diferent λ1 & λ2, the upper figure corresponds to λ1, while the lower figure corresponds to

λ2.

6 CONCLUSION

We propose the ACLCDR framework that leverages a multitask training strategy to jointly train the model with

multiple auxiliary contrastive learning for Top-K CDR. The embeddings are signiicantly afected by the implicit

noisy interactions, and the efect can be enhanced through the message aggregation mechanism. To address

these issues, we combined adversarial learning with contrastive learning. Speciically, adaptive augmentation

methods, such as MDPs, are adopted and a reinforcement learning technique, Deep Double Q-learning(DDQN),

is employed to design an adaptive augmentation method, which can lexibly generate adversarial samples as

augmented samples with diferent views of the original graphs in the two domains for contrastive learning tasks.
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Moreover, inspired by GCA [55] and SGL [40], we devised several contrastive learning tasks to help the model

capture domain-speciic and domain-shared features, such as intradomain and interdomain tasks, to improve the

representation learning and alleviate the negative impact of the noise data. Furthermore, inspired by BiTGCF [21],

we designed a novel feature propagation and transfer module, which reasonably simpliies the feature propagation

mechanism, to generate representative embeddings and achieve a promising recommendation performance.

In this way, ACLCDR can be used to obtain reined embeddings and achieve a remarkable performance for

the cross-domain model. The remarkable performance of the CDR for nine real-world cross-domain tasks

adopted from Amazon and Douban proved the efectiveness of the developed ACLCDR framework. Speciically,

ACLCDR outperforms the best state-of-the-art baseline by 25%, 42.5%, 16.3%, and 23.8% in terms of HR@10 and

NDCG@10 for the Music & Movie dataset obtained from Amazon. In the future, we intend to continue our

research on the CDR domain. We believe that our proposed method can be extended to a more realistic situation

by considering user privacy and user bias issues for CDR. Furthermore, in the present study, we devised the

ACLCDR framework for the Top-K recommendations. The next-item recommendation that considers the use of

multi-interest information [6, 33] and explainable recommendation systems based on knowledge graphs [16, 23]

for CDR will be evaluated in our future studies.
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